/Weather Sections
   /Refreshing Weather
air temperatureair temperature

Air Temperature

One might wonder how the air in our atmosphere warms up as it is transparent for heat radiation coming from the sun. We feel that heat, but that is in fact infrared radiation (IR) much like when we stand in front of a heater or open fire.

As air is known to be a good isolator (home construction with insulated double walls with a gap in between as isolation is a good example) it is interesting to find out why and how air gets its temperature so that we feel comfortable in our house and in our environment, although we can not influence the air temperature outside at all.

On this page we take a deep dive in the process or processes that heat or warm up our planet/ air/ atmosphere.


Transparent Air

The composition of our atmosphere consists mainly of Nitrogen and Oxygen (99 %), both of which are transparent to incoming and outgoing infrared radiation (and visible light too :-). The remaining 1 % consists of Argon (0,93 %) and Carbon Dioxide (0,04 %) plus some other trace gases; see our page about atmospheric composition for more detail on that.

Heat transfer

There are five processes that transfer heat from the Earth and air, they are:

  • Conduction - transfers heat via direct molecular contact at the surface
  • Convection - air which is warmed up by conduction travels upward in the atmosphere, cooling the surface
  • Radiation - will not heat up the atmosphere but only objects in it (Earth by the Sun)
  • Advection - this is the horizontal movement of an air mass with different properties
  • Turbulence - this causes the mixing of air layers with different temperatures

Conduction, Radiation & Convection

These are easily explained with the following example: A radiator (in a car engine or your house) does radiate a little when hot water is pumped through it. But the air is actually heated by touching/ conduction with the radiator. Try holding your hand some distance away and then touching it. At a couple of inches away the heat is barely felt but by touching it, the heat is felt almost instantly.

Convection occurs when air touching the radiator moves upwards (because the density of warm air is lower, molecules further apart) taking the heat away, and this motion thus basically tries to cools the radiator.

Advection & turbulence

Both are a result of the movement of air after it has warmed up by conduction and moving upwards by convection, resulting in the development of a lower pressure area (known as a thermal low). Air is then moving in from nearby higher pressure areas and turbulence develops when this moving air (known as wind) collides with objects on the surface or other air masses.

Sun -> Earth -> Atmosphere -> Space

As such, we can see that the mantra of Hans Schreuder "Sun heats Earth and Earth heats Atmosphere" is correct, see the next link on the greenhouse effect. The atmosphere does not heat the Earth (thermodynamically impossible due to difference in mass and temperature); on the contrary we can see the atmosphere as a giant cooling system. It only slows the outgoing infrared radiation a little bit.

The radiation from the Sun passes through the atmosphere and collides with the mass of the Earth, be it rocks, sands, prairies, forests, lakes, rivers and oceans. Conduction and convection then and only then warms the atmosphere, moving the warmth away from the planet into space (which is around 0 K).


co2 spectrumco2 spectrum

With a gain in altitude the air molecules will get farther and farther apart, and thus their temperature drops. An air bubble which has been warmed by conduction rises by convection as long as its temperature is higher than the surrounding air. During ascend the air bubble also cools, adiabatically by virtue of lower air pressure. Until an equilibrium with the surrounding air is reached and vertical movement stops. The amount of moisture in that air bubble also determines how fast it cools, more moisture means more energy in the bubble thus slower cooling while ascending.

Atmospheric pressure

On the other hand, within a high pressure area air descends and adiabatically increases, due to the rising pressure, in temperature whereby clouds dissolve due to lowering of relative humidity. You will notice this effect with an inversion layer at a certain altitude, where low clouds rise up this layer and above it, the descending air is clear. The conclusion one might draw is that overall air pressure also influences the temperature of the air/ atmosphere.

Gas Laws

The gas law (Pv = nRT) explains this phenomenon perfectly: pressure is proportional to temperature, if the number of particles and the volume of the container are constant. More at the University of Illinois: examples gas law.

Warm air

co2 spectrumco2 spectrum

As the air is warmed by conduction and pressure, the so called 'greenhouse gases' also warm up and the molecules in the air re-radiating at lower infrared frequencies. But this lower temperature, longer wavelength radiation does not get very far as the molecules are very tiny and are governed by the Inverse Square Law.
And since CO2 radiates at a longer wavelength (mostly around 13 µm) than the Earth, it can not warm the planet. It has a lower temperature than the planet and according to thermodynamics a cooler object can not heat up a warmer object.

Those thinking that only the so called 'greenhouse gases' (1% of the atmosphere) get warm, should realize that its impossible for the air to be 99% cold and 1% warm.
And then for those 'greenhouse' gases be able to warm up the Earth, as some say, is thermodynamically impossible.

Should you wish to get up to speed regarding the laws of thermodynamics, follow the next link: Thermodynamic Laws.

written by EAI.